The Nexus Engine Architecture

High-Availability Hybrid Cloud System Design

graph TD %% Styles classDef aws fill:#FF9900,stroke:#232F3E,stroke-width:2px,color:white; classDef n8n fill:#EA4B71,stroke:#333,stroke-width:2px,color:white; classDef ai fill:#10a37f,stroke:#333,stroke-width:2px,color:white; classDef db fill:#336791,stroke:#333,stroke-width:2px,color:white; classDef user fill:#6366f1,stroke:#333,stroke-width:2px,color:white; classDef render fill:#f59e0b,stroke:#333,stroke-width:2px,color:white; subgraph Client_Layer [Client Interaction] Dashboard[User Dashboard / Next.js]:::user UploadPortal[Secure Upload Portal]:::user Approver[Mobile Approval Interface]:::user end subgraph Orchestration [Orchestration Layer] N8N[N8N Gateway & Logic Router]:::n8n end subgraph AWS_Cloud [AWS Infrastructure] S3_Raw[S3: Raw Assets]:::aws S3_Final[S3: Rendered Video]:::aws Lambda_Vision[Lambda: Computer Vision]:::aws Lambda_Sync[Lambda: Beat Sync / Librosa]:::aws SQS[Message Queue]:::aws end subgraph Data_Layer [Data & Memory] Postgres[(PostgreSQL: User/Biz Data)]:::db Pinecone[(Pinecone: Vector/Brand Memory)]:::db end subgraph AI_Services [External AI Intelligence] GPT4[OpenAI GPT-4o: Scripting]:::ai Banana[Banana.dev: Auto-Tagging]:::ai Gemini[Nano Banana: Fallback Gen]:::ai Runway[Runway: Img-to-Video]:::ai end subgraph Factory [Rendering Factory] Shotstack[Shotstack API]:::render end subgraph Distribution [Distribution] Ayrshare[Ayrshare API: Socials]:::render GoogleBiz[Google Biz Profile: Maps]:::render end %% Flow 1: Ingestion UploadPortal -- "1. Upload 4K Video (Presigned URL)" --> S3_Raw S3_Raw -- "2. Trigger Event" --> Lambda_Vision Lambda_Vision -- "3. Analyze Frames" --> Banana Banana -- "4. Return Tags [Sunset, Oysters]" --> Pinecone %% Flow 2: Trigger & Logic Review_Webhook(Google Review Webhook) --> N8N N8N -- "5. Fetch Context" --> Postgres N8N -- "6. Semantic Search" --> Pinecone Pinecone -- "7. Return Best Asset IDs" --> N8N N8N -- "8. Generate JSON Script" --> GPT4 %% Flow 3: Fallback Logic N8N -- "9. If Asset Missing" --> Gemini Gemini -- "10. Gen Static Img" --> Runway Runway -- "11. Return Video URL" --> N8N %% Flow 4: Assembly N8N -- "12. Send Audio + Clips" --> Lambda_Sync Lambda_Sync -- "13. Return Beat Timestamps" --> N8N N8N -- "14. Send Final JSON" --> Shotstack Shotstack -- "15. Render 4K" --> S3_Final %% Flow 5: Delivery S3_Final -- "16. Notify User" --> Approver Approver -- "17. Approve" --> N8N N8N -- "18. Publish" --> Ayrshare N8N -- "19. Update Maps" --> GoogleBiz

1. The Ingestion Pipeline

Goal: Turn dumb files into smart data.

Files are uploaded directly to AWS S3 (bypassing the server). This triggers a Computer Vision worker (Banana.dev) that tags the footage (e.g., "Luxury," "Oysters") and stores the embeddings in Pinecone.

2. The Nexus Brain

Goal: Context-aware scripting.

N8N acts as the router. It pulls the Client's "Brand Voice" from the vector database and uses GPT-4o to write a script. If an asset is missing, the Fallback Protocol triggers (Gemini + Runway) to generate the missing shot instantly.

3. The Video Factory

Goal: Broadcast quality, rendered in the cloud.

We use a Python Microservice (Librosa) to analyze the music track and find the "Downbeats." Shotstack uses these timestamps to cut the video exactly to the music rhythm using the 4K assets stored in S3.

4. Distribution

Goal: Omnipresence.

Once approved via the Mobile UI, the system pushes the video to Ayrshare (for IG/TikTok) and the Google Business Profile API (for Search/Maps), injecting SEO metadata into the upload.